JANUARY 1980

MAO-SUNG YAO

Maintenance of Quasi-Stationary Waves in a Two-Level Quasi-Geostrophic

Spectral Model with Topography

MAo0-SUNG YAO
Goddard Institute for Space Studies, Goddard Space Flight Center, NASA, New York, NY 10025
(Manuscript received 12 March 1979, in final form 30 July 1979)

ABSTRACT

The maintenance of the quasi-stationary waves obtained through numerically integrating a two-level
quasi-geostrophic spectral model on a 8-plane is studied. An idealized topography which has only wave-
number n in the zonal direction and the first mode in the meridional direction is used to force the quasi-
stationary waves. However, the model’s motion contains wavenumbers 0, 7 and 27 in the zonal direction,
while the first three modes in the meridional direction are allowed for each wave. The cases n = 2 and
n = 3 are considered.

The mechanism for maintaining the quasi-stationary waves is investigated by varying the imposed
thermal equilibrium temperature gradient, AT,, and the reciprocal of the internal frictional coefficient,
0.5 k;7*. If the flow is not highly irregular, the available potential energy of quasi-stationary waves (Ag)
is maintained by the energy conversion A; — Ag, where A, is the available potential energy of the time-
averaged zonal mean flow. For n' = 3 and moderately large AT, and k,”?, the kinetic energy of these waves
(K) is maintained by the energy conversionAg — K. If AT, ork,~' is smaller while n = 3, kinetic energy
is supplied to the quasi-stationary waves by the energy conversion K, — K through the topographic
forcing, where K is the kinetic energy of the time-averaged zonal mean flow. The latter mechanism also
maintains the kinetic energy of the quasi-stationary waves for n = 2 with relatively small AT, and k,™*.
When AT, or k,7! is sufficiently large, the flow is highly irregular and a unique regime cannot be defined
for eithern = 2 orn = 3.

In the case of n = 3 and moderately large AT, and k,7%, the energy cycle, spectra and form of the quasi-
stationary waves suggest that the quasi-stationary waves are largely baroclinic waves which draw their
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energy from the forced waves.

1. Introduction

The earth’s topographical forcing is one of the
major mechanisms for producing quasi-stationary
waves in the atmosphere. These topographically
forced waves are effective in transferring eddy
energy upward into the stratosphere and mesosphere
(Eliassen and Palm, 1960; Charney and Drazin, 1961;
Matsuno, 1970). In addition, the topography con-
siderably influences the angular momentum balance
of the atmosphere through the mountain torque due
to the pressure difference between the west and east
sides of a mountain range (White, 1949; Newton,
1971). However, the mechanisms for maintaining
quasi-stationary waves may be quite different from
the mechanisms that force them.

Many studies have been made on the role of the
topography in forcing stationary waves, such as
Charney and Eliassen (1949), Bolin (1950), Gambo
(1956), Murakami (1963b) .and Derome and Wiin-
Nielsen (1971). Most of these studies used linearized
equations with prescribed zonal mean flows. Saltz-
man (1968) gave a general review of this kind of study.

On the other hand, there have also been some
observational studies on the maintenance. of the
quasi-stationary component of the atmospheric

circulation. Holopainen (1970) performed an ob-
servational study of the energy balance of the quasi-
stationary disturbances in the Northern Hemisphere.
He concluded that in winter the quasi-stationary
disturbances are typically baroclinic waves which
get available potential energy from the zonally
averaged mean flow. These waves then convert part
of their potential energy into Kinetic energy to off-
set the loss of the latter due to small-scale turbulent
friction, large-scale transient motion and conversion
into zonally averaged mean motion. As far as the
energy balance of the quasi-stationary waves is con-
cerned, the effect of mountains seems to be very
small. In summer the stationary disturbances appear
to form a thermally driven system. In such a system
conversion from available potential energy com-
pensates for the frictional loss of kinetic energy,
and the available potential energy, in turn, is main-
tained by generation from diabatic heating. Mur-
akami (1963a) and Holopainen (1966) also found that
the topography plays a minor role in the energy
balance of quasi-stationary disturbances in the
atmosphere.

Thus, it is not obvious how the theoretically cal-
culated stationary waves are related to the observed
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quasi-stationary waves. In the present study, a clear
distinction is made between stationary waves, which
are solutions to the governing equations without the
tendency terms, and quasi-stationary waves, which
are time-averaged waves. Our objective is to exam-
ine the maintenance of the quasi-stationary waves
produced by a simple two-level quasi-geostrophic
truncated spectral model with topography. The
mechanism for maintaining the waves will depend
on parameters, such as n, AT, and k;7' and this
dependence can be readily obtained with such a
model. In Section 2, the two-level quasi-geostrophic
truncated spectral model is described. In Section 3,
the numerical aspects of integrating the spectral
model are discussed, and the quasi-stationary solu-
tions are compared with the stationary solutions.
An analysis of the mechanisms for maintaining the
quasi-stationary waves is presented in Section 4.

2. Two-level quasi-geostrophic truncated spectral
model

The planetary-scale waves forced by topography
and the cyclone-scale transient waves can be
described by the quasi-geostrophic system of equa-
tions. We assume that the motion takes place in a
‘cyclic zonal channel of width Y, in the y (meridional)
direction and of a length X, in the x (zonal) direction.
The effect of the earth’s sphericity is taken into
account by assuming that the Coriolis parameter has
a constant meridional gradient 8. Then, we have the
following governing equations in p coordinates

(56; + vg-V)gg + Bog

0 d
it = g —KkVxT, (1)
, ap op
v, =v=0
FT = 0, Wy = 0
Iy = PBCDvga wp = —ppgVy Vh

where v is the meridional wind component, C,, the
drag coefficient, h the topographic function, and
ps a standard air den81ty at the bottom of the
atmosphere.

In the vertical d1rectlon, we divide the mass of
the atmosphere into two layers. (Ap = 500 mb is
used even though the surface pressure is not neces-
sarily equal to P; = 1000 mb because of the exist-
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where ¢ is time, p pressure, ¢ geopotential, f, the
Coriolis parameter at a standard latitude, g gravita-
tional acceleration, k a unit vector in the vertical
direction, R the gas constant, C, specific heat
capacity at constant pressure, « specific volume, v
wind velocity vector, w = dp/dt the vertical p-veloc-
ity, v, = f;"')k X V¢ the geostrophic velocity, L
= fo~ 1V2¢ the geostrophic'vorticity, S —(as/6;)
X (86,/8p) the static stability, «; the horlzontally
averaged «, 6, the horizontally averaged potential
temperature, I = — g p,2u(dv,/dp) the frictional stress,
ps horizontally averaged density, » kinematic coef-
ficient of turbulent eddy viscosity, Q = —uC,
x (T — T,) the diabatic heating, T temperature, 7T,
the imposed thermal equilibrium temperature and
M a constant.

Eq. (1) is the quasi-geostrophic vorticity equation,
(2) the thermodynamic equation, (3) the continuity
equation and (4) the hydrostatic equation. The static
stability S, is assumed to be a constant. The diabatic
heating is in the form of Newtonian cooling, where
T, is a function of y only and so does not include the
thermal effect of land-sea contrast. The reciprocal
of w is the time required for the atmosphere’s
temperature to reach the point where T — T,
= (T |0 — To)le if there is no motion. We assume
the following boundary conditions:

atY =0,7%,
at P = Py, the top of the model atmosphere,

at the bottom of the model atmosphere,

ence of topography. In other words, the topography
is assumed to have a small amplitude.) As shown
in Fig. 1, we carry ¢ and v at levels 1 and 3, w and
T at the top and bottom of the atmosphere, and o,
I' and « at the middle level.

Applying Eq. (1) to levels 1 and 3, and (2) to level
2, we can derive

V2 —;M = - ffoJ(¢M,V2¢lt4) - -f—‘)-J((l)s,VZd’s) - B- ﬂ — €J(d3,h) — 5 Vids, ©)
k 0

V20— ) (s V) w2, - e+ Lo @
ot fo fO p
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T, is the imposed thermal equilibrium temperature
at level 2. Egs. (5), (6) and (7), together with the
boundary conditions, form a closed set of equations
for the unknowns, ¢y, ¢s and w, when other param-
eters are given.

. In deriving (5)-(7), we let v,, = (v,; + v,3)/2 and
Vor = (3vys — Vg1 )/2. v43, rather than vz, is used to
compute the surface vertical p-velocity in order that
the topography does not make a net contribution to
the time rate of change of the total energy.

We will expand the horizontal dependence of the
variables in terms of double Fourier series. The tech-
niques used are essentially those of Lorenz (1963).
We denote the chosen orthogonal functions as F,,

F,, . ... They satisfy the boundary conditions and
the orthogonality relations
1 Yo (Xo 1, if i=j
j J FiFdxdy = 8; = [ )
XoYo Jo Jo 0, if i#j.

The Jacobian of any two orthogonal functions will
also be expanded in terms of functions F;, such that
J(Fj’Fk) = 21 Ciijh (10)
=

where the interaction coefficients C;; are com-
puted by

Cix =

1 Yo [Xo
J J F,J(F;,Fy)dxdy. (11)

XoYo Jo Jo
Welet g, 7, Wi, Hy, Yipi, Yui, P3; and 7, be the spec-

tral coefficients of variables ¢y, dg, wq, h, ¢p, ¢y,
¢; and ¢, respectively, so that

by = 21 . Fy,

The equations in spectral form were given by Yao
(1977), and will not be shown here.

If we let x, = 2mx/X, and y, = wy/Y,, the orthog-
onal functions F; can be chosen to be

Yoo =1
Yoo = V2 COS(MoY,)
Umono = 2 SiN(M,Yy,) COS(79X0) ?
Ymono =2 SiN(myy,) sin(nex,)

©

¢S = E TiFi’ etc.

i=1

i

(12)

where my = 1,2,3,...,n,=1,2,3,....
In the results discussed in Section 4, we will re-
strict ourselves to some highly truncated cases

where the only wavenumbers allowed are m, = 1,2
and3andn, = nand2n.nisthe lowest existing eddy
wavenumber in the x direction, as well as the wave-
number of the topography. We will describe the
topography by a single component, y; ,, and the im-
posed thermal equilibrium temperature by two com-
ponents, s, o and ¥ . Use of such a highly truncated
system, with only two wavenumbers in the zonal
direction allows us to see the interactions between
the topographically forced stationary waves and
baroclinically unstable transient waves in a most
simplified form. We will only consider the cases
n = 2 and n = 3, so that both topographical forc-
ing and baroclinic instability are significant, and oc-
cur at realistic wavenumbers.

3. Numerical integration of the spectral model

The spectral model was integrated initially by
perturbing the stationary solution to the equations
governing the spectral coefficients. The stationary
solution was obtained by the Newton method of
iteration. It would be interesting to see whether
there are multiple stationary solutions existing in
our system as Charney and DeVore (1979) obtained
in their simple barotropic system. However, since
our system has 30 degrees of freedom, it is prohibi-
tive to do so. In any case, the physical mechanisms
we will study do not rely on the possibility of having
multiple stationary solutions. Also we note that Yao
(1977) did obtain the same stationary solution with
initial guesses of no motion or stationary sym-
metric flows.

T ——— W, [ ——— Pr=0mb
Ap """""" q5| ,Vl ________ pll: 250 mb
% Q,, Wy, — p, =500 mb
Ap bomeee VA | p,= 750 mb
l wBer
c n 2 pg = 1000 mMD

n

F1G. 1. Vertical discretization of the spectral model. The topo-
graphical function # is shown only for one wavelength.
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F1G. 2a. Eddy geopotential height at level 1 in the unit of m of the
stationary solution with n = 3, k;7! = 26 days and AT, = 38 K.

Unless otherwise mentioned, we used the follow-
ing parameter settings:

Xo = 27R, cos45°, where R, is the earth’s radius
Y, = 60° latitudinal length
S, = 0.03 m2 mb2 52

Jo=10"%s"1
B=16x 101 m1!s!?
kB = 4k,, m = 2k1.

The amplitude of the topography is 750 m. The
densities at level 2 and at the surface are based on
the temperatures 250 K (7T,) and 280 K (Tp), respec-
tively. We define AT, = T.(0) — T.(Y,). [T.(0)
+ T(Y))2 = Tg.

For the earth’s topography at 30°N the amplitude
of the component n = 2 is roughly 750 m (the com-
ponent n = 3 is generally smaller). The relations
between k;, kp and u are rather arbitrary. However,
they provide for a bulk account of the damping ef-
fects on the atmospheric eddies, and leave AT, and
k; ! as parameters controlling the model’s circula-
tion properties. These damping mechanisms should
also suppress some eddy energy reflected from the
upper boundary. Except for the highly irregular
regime, we do not expect serious distortion in the
results discussed in Section 4 because of this energy
reflection. Other studies (e.g., Murakami, 1963b;

VoLUME 37

Derome and Wiin-Nielsen, 1971) have also used a
rigid upper boundary.

In order to help us understand the physical proc-
esses discussed in Section 4, we show two sets of
stationary solutions associated with n = 3 found by
Newton’s method. Figs. 2a and 2b show the eddy
geopotential height at levels 1 and 3 for £,/ = 26
days and AT, = 38 K. The position labeled with a
cross is the highest point of the topography and the
position labeled with a circle is the lowest point of
the topography. It is seen that the trough and ridge
axes have very little horizontal tilt, and, therefore,
the stationary waves transport only a small amount
of momentum meridionally. The low geopotential
center is situated slightly to the left of the ridge of
the topography at level 1, while it is situated to the
right at level 3. Therefore, the trough and ridge axes
are tilted westward with height and it follows that
heat is transported northward. The third mode in y
is not so clearly seen at level 1 as it is at level 3.
This might be because the wave of the third mode
has a higher two-dimensional wavenumber and thus
is not so effective in upward propagation as the first
mode (cf. Charney and Drazin, 1961). The amplitude
of the first mode is larger at level 1 than at level 3.
This result is consistent with the finding by Derome
and Wiin-Nielsen (1971) that the amplitude of
topographically forced stationary waves of low
wavenumber increases with height. The structure
of the stationary waves also tells us that the moun-

%

o]

o] Xo/3

FI1G. 2b. As in Fig. 2a except at level 3.
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Fi1G. 2¢. Meridional profiles of zonal mean winds (m s™*) and
zonal mean temperature deviation (K) from the horizontal
average temperature of the stationary solution with n = 3,
k;~! = 26 days and AT, = 38 K.

tain torque is negative and tends to drain the westerly
momentum. Fig. 2¢c shows the meridional profiles
of zonal mean winds and temperature. The surface
wind is easterly and thus the frictional torque is
positive and compensates for the negative mountain
torque.

Figs. 3a, 3b and 3c show the corresponding fields
as Figs. 2a, 2b and 2c, but with smaller AT.(34 K).
The general structure is similar to the case with larger
AT,, but the low geopotential center shifts eastward,
most significantly at the middle latitudes of level 3.
The amplitude of the stationary wave decreases
because the zonal mean flow also decreases.

Y

X
-100

o]

(o} Xo/3
F1G. 3a. As in Fig. 2a except with AT, = 34 K.

0o

o] /3

KQ (@
Xo
F1G. 3b. As in Fig. 2b except with AT, = 34 K.

Integrations were performed for periods of up to
150 days. The time step was 1 h. We used a sequence
of one Matsuno step followed by five leapfrog steps.
The predicted variables from days 120-150 were
usually used for energetics study. The sampling
frequency was once in every 6 h.

In order to compare the quasi-stationary solutions
with the stationary solutions and thus help us under-
stand the physical processes, we show the two sets
of quasi-stationary solutions corresponding to Figs.
2 and 3. Figs. 4a—4c show the quasi-stationary solu-
tion with k,7! = 26 days and A7, = 38 K. When we
compare this quasi-stationary solution with the cor-
responding stationary solution (see Figs. 2a-2c¢)
large differences in amplitude and structure are

Y%
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fl-Tedx =0l
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FiG. 3c. As in Fig. 2¢ except with AT, = 34 K.
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F1G. 4a. As in Fig. 2a except for the quasi-stationary solution.

noted. This suggests that the mechanism responsible
for maintaining the quasi-stationary wave is quite
different from the mechanism which forces them.

L

Yo

\4

O
oq |
: |
0 Xo/3

FiG. 4b. As in Fig. 2b except for the quasi-stationary solution.
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FiG. 4c. As in Fig. 2c except for the quasi-stationary solution.

However, when AT, is smaller (see Figs. Sa-5c for
AT, = 34 K) the guasi-stationary waves are quite
similar to their corresponding stationary solutions.
Therefore, the mechanisms maintaining the quasi-
stationary waves appear to change with the param-
eters AT, (and k;7'). Further discussion will be given
in Section 4 where the energetics of the quasi-
stationary solutions is presented.

4. Maintenance of quasi-stationary waves

We define the horizontally averaged Kkinetic
energy per unit mass by

1 Yo Xol
K = — [V 2 + (Vo)ldxdy, (13
XOYOL J =5 (V67 + (Topldxdy, (13
Yo
© | o
(@]
3
0
0 X./3

FI1G. 5a. As in Fig. 3a except for the quasi-stationary solution.
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Fi1G. 5b. As in Fig. 3b except for the quasi-stationary solution.

while the horizontally averaged available potential
energy per unit mass is defined by

1 Yo rXo
XOYO JO L Ap?

It is easy to prove that the system (5)—(7) conserves
the summation of K and A when the heating and
friction terms are dropped.

Using the spectral representation for ¢, and ¢>S,
Egs. (13) and (14) become

bsPdxdy. (14)
D
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F1G. 5¢c. As in Fig. 3c except for the quasi-stationary solution.

1 A 2
K = 2 _12 (ll’t + 712)’ (15)
=1 J0
! 2
A = 1' . 16
. g Ap?S, (16
Here I is an integer where we truncate the spectral

expansion.

In our consideration of the energy balance, we are
concerned with the kinetic energy and the available
potential energy of time-averaged zonal mean flow
(K; and A;), of time-averaged eddies (K¢ and Ag)
and of transient flow (K, and Ay), so that

K_=Kz+K5+KT, (17)
A=A, + A5 + Ay, (18)

where the overbar represents the time-averaging
operator. If we let square brackets be the zonal
averaging operator and let the asterisk represent the
deviation from the zonal mean, then for a variable
Z, [Z] is its time-averaged zonal mean, Z* its time-
averagededdyandZ' =Z — [Z] - Z* =Z — Zits -
transient eddy. We can derive the following energy
equations:

dK
dtZ = —C(Kz,Kg) — C(Kz,Kr) + C(Az,K;) — CB(K3,Ks) — CB(K;,Kr) — Dy, (19)
dK
7 = C(Kz,Ks) — C(Ks,K7) + C(As,Ky) + CB(KZ,K_S) — Dy, (20)
dK
7l C(Kz,K7) + C(Ks,Ky) + C(Ar,K7) + CB(Kz,K7) — Dy, 21
dA;
T = —C(Az,Kz) — C(Az,As) — C(Az,Ar) + Gg, (22)
dAg
i = —C(As,K5) + C(Az,As) — C(Ag,Ap) + G, (23)
dA,

= —C(Ar,K7) + C(Az,Ap) + C(As,Ap) + Gy (24)

dt
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FiG. 6. Energy cycle diagram.. The arrows indicate the positive direction of
individual processes as defined by Eqs. (A1)-(A17).

The definition of each term on the right-hand side of
(19)-(24) is given in the Appendix. Symbolically,
C(A,B) means conversion of A to B, G; means gen-
eration of A7, and D; means dissipation of K.

If we drop the diabatic heating and dissipation
terms from Egs. (19)-(24) and then take the sum of
these equations, we obtain

d
E;(KZ+KS+KT+AZ+AS+AT)=0' (25)

50r
40t

30

T

AT
(°K)
20

HADLEY

O . 1 L ]
0 10 20 30 .

K (DAYS)

Fi1G. 7. Stability diagram for the case n = 3.

Therefore, the truncated spectral model still con-
serves the sum of total kinetic and available po-
tential energy.

Fig. 6 shows the energy exchange processes in an
energy cycle diagram. The arrows indicate the direc-
tion of the energy conversions when (A1)—-(A17) are
positive. In addition to the cycle A; > Ar—
K;— K,, thecycleA; - Ag — K3 — K; is shown.
These two cycles interact through energy conver-
sions between Ag and A, between K and K, and
between A; and K. CB(K,,K) and CB(K,,K) are
energy conversions due to the topographical effect.
This topographical effect is in the form of a vertical
geopotential flux at the surface. CB(K;,K7) is usually
negligible, and so is not shown in the figure. The
processes C(A;,A) and C(K,,K ) are similar to the
processes C(Az,Ap) and C(K,,K;), but associated
with the quasi-stationary eddies. The processes
C(Az,Ag) and C(K;,K) will be triggered if there is
topography because of the presence of damping
mechanisms.

a. Casen =3

Fig. 7 is the stability diagram for n = 3. The
solid curve describing the transition between the
Hadley and the Rossby regimes is obtained by a
stability study (Yao, 1977). In the Hadley regime
there are stationary waves plus zonal mean flow.
This combined flow is stable with respect to per-
turbations, and therefore is still regarded as in the
Hadley regime even though there are eddies in-
cluded. There is no ‘‘upper’’ Hadley regime, be-
cause the static stability is assumed a constant.
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In the Rossby regime the zonal mean flow and/or
stationary waves are unstable with respect to
perturbations. The dashed curve close to the solid
curve describes the transition between the Hadley
and the Rossby regimes in the case of no topography.
It is apparent that topography has little effect on the
stability properties of the zonal mean flow. The
linear baroclinic stability properties of a two-level
quasi-geostrophic atmosphere on a 8-plane has been
discussed by Phillips (1954).

In Fig. 7 there is a curve which denotes the transi-

tion between two Rossby regimes, I and II. In the

Rossby regime I, the energetics of the quasi-sta-
tionary waves is basically the same as the energetics
of the stationary waves in the Hadley regime. The
kinetic energy (Kg) is maintained mainly by the
topographical forcing, whereas in the Rossby
regime II, K is maintained mainly through the
energy conversion Ag — K. In all three regimes,
the available potential energy of the quasi-stationary
waves (Ag) is maintained by the energy conversion
Az — Ag. When AT, or k; 7' is sufficiently large, the
model’s motion becomes highly irregular and a clear
distinction between different Rossby regimes can
not be made. However, when AT, or ;7! is very
large, the assumption of a constant static stability
must be highly unsatisfactory.

As an example from Rossby regime 11, Fig. 8 shows
the time-averaged energy cycle diagram from the
results of integration for the combination AT,
= 38 Kandk,;™! = 26 days. We see that the transient
waves are essentially maintained by the baroclinic
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instability of the mean flow. The transient waves
feed part of their kinetic energy back to the kinetic
energy of the zonal mean flow through the barotropic
processes. The above energy cycle is typical of the
atmosphere (cf. Oort, 1964) and is clearly produced
by our model.

The available potential energy As of the quasi-
stationary waves is maintained by the energy con-
version A, — Ag. A portion of Ag is then converted
to the kinetic energy K of quasi-stationary waves;
K is also produced from the conversion K; — K
through the topographical effect. However, a por-
tion of K feeds back to the zonal mean flow through
the barotropic process associated with momentum
transports. It is seen that C(Ag,K) is considerably
larger than CB(K,,K;). From this we conclude that
the kinetic energy of the quasi-stationary waves for
this case is maintained mainly by the energy con-
version Ag — K. This result is similar to the
findings of Holopainen (1970) for winter.

The time-averaged values of energy conversion
between Ay and A; and energy conversion between
K and K; are relatively small. However, in examin-
ing the time series of energy conversion associated
with the transient waves (Fig. 9) we see that the con-
version process C(Kg,K7) is quite large instantane-
ously. It follows, then, that the barotropic instability
of quasi-stationary waves is quite significant over
shorter periods. However, the process C(Ag,Ap)
is very small all the time.

From Fig. 9 we also see that C(K;,K;) is oscil-
latory in time with quite a large magnitude. The

Fi. 8. Energy cycle of the quasi-steady state with n = 3, k,™! = 26 days and
AT, = 38 K. Energy is in units of m? s2, while conversion rates are in units of

107* x m® s73,
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F1G. 9. Time series of the energy conversion rates forn = 3 withk,”! = 26 days and AT,
= 38 K. The thin solid line is a reference line where conversion rates are zero.

oscillation of C(K;,K;) is a manifestation of the
barotropic cycle [cf. Arakawa, (1961) and Thompson
(1957)]. The conversions C(A;,A;) and C(A7,K7)
are large and usually positive. The oscillations of
C(A;,Ar) and C(Ar,K;) are manifestations of the
baroclinic cycle (cf. Pedlosky, 1970, 1971, 1972).
As an example from Rossby regime I, Fig. 10
shows the energy cycle diagram for the combina-
tion of k,”* = 26 days and AT, = 34 K. We see that
the major features ‘of the energy cycle associated
with the transient waves are the same as before.

However, it is apparent in this case that the quasi-
stationary waves are maintained by the topographi-
cal effect CB(K;,K;), rather than by the conver-
sion C(Ag,Kg). The conversions C(Ks,K;) and
C(Ag,Ar) are small even instantaneously.

A different kind of behavior occurs when AT,
or k;7' is sufficiently large. Under these circum-
stances, the motion is highly irregular. The values of
C(A;,Ap) and C(K,K 1) can be very large.

In order to understand the physical processes
responsible for maintaining the quasi-stationary

Fi1G. 10. As in Fig. 8 except with AT, = 34 K.
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Fic. 11. Energy cycle of the stationary solution with n = 3,
k; ' = 26 days and AT, = 38 K.

waves in Rossby regime II, we will also look into the
energy spectra and energetics of the stationary solu-
tions for some selected cases. .
Figs. 11 and 12 show the energetics diagrams for
the stationary solutions with the combinations of
k;~' = 26 days and AT, = 38 K (Fig. 11) and &;!
= 26 days and AT, = 34 K (Fig. 12). Comparing
Figs. 12 and 10, we see that in Rossby regime I,
the energetics of the stationary waves is little in-
fluenced by the presence of baroclinic waves. Thus,
the quasi-statonary solution is similar to the sta-
tionary solution (cf. Figs. 3 and 5). In Rossby
regime II (cf. Figs. 11 and 8), there is a large loss

FiG. 12. As in Fig. 11 except with AT, = 34 K.

of stationary eddy available potential energy be-
cause of the quasi-stationary baroclinic eddies draw-
ing on that energy source. Comparing Figs. 4 and 2,
we see that the higher modes have larger amplitude
in the quasi-stationary waves. This meridional struc-
ture makes it more efficient for the baroclinic eddies
to draw energy from the forced waves, because the
zonal perturbation velocity and the associated zonal
heat fluxes are maximized.

Table 1 shows the energy spectra for three selected
cases. Forn = 3, k,/! = 26 days and AT, = 34 K,
the dominant wavenumbers are well separated be-
tween quasi-stationary waves and transient eddies.
It is apparent that the dominant quasi-stationary

TABLE 1. Energy spectra of three selected cases.*

Ky Ky Ag Ar
n (k™' AT,) K, K Ks, Ko K Krpp Az Ag Ase Ao » An Arg
37.81 341.10 9.85 46.34
3 (26,38) 151.66 440.30
36.58 1.23 26.20 62.12 252.77 9.63 0.22 4.02 10.85 31.47
14.20 98.13 22.50 8.11
3 (26,34) 191.54 540.20 :
14.17 0.03 0.00 0.40 97.73 22.49 0.01 0.00 0.13 7.97
8.18 84.02 23.43 22.23
2 (26,38) 299.79 668.92 .
7.93 0.25 0.91 0.83 82.27 23.36 0.07 0.20 0.35 21.67

* Energy is in the unit m? s~2, The subscripts 0, 1 and 2 denote the energy components of wavenumbers 0, n and 21, respectively.
The numbers shown in this table are very slightly different from the Figs. 8, 10 and 14, because of redoing numerical integration

and energetics analyses with a different computer at GISS.
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F1G. 13. Stability diagram for the case n = 2.

wave is wavenumber 3 and is forced by the topog-
raphy, and that the dominant transient wave is wave-
number 6 and is due to baroclinic instability of the
zonal mean flow. For AT, = 38 K, wavenumber 3
is also unstable baroclinically. There are two energy
sources for this baroclinic wave—one is the zonal
mean flow, the other the forced waves. Thus, the
baroclinic wave of wavenumber 3 consists of two
components (which may not be well separated):
one component draws energy from the zonal mean
flow and tends to be traveling and have larger wave-
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length in the meridional direction; the other com-
ponent draws energy from the forced waves and
tends to be stationary and have shorter wavelength
in the meridional direction. As a result, both the
quasi-stationary and transient eddy components are
enhanced. This mechanism of cooperation between
forcing and baroclinic instability appears to be
largely responsible for the maintenance of the quasi-
stationary waves in Rossby regime II. This mecha-
nism disappears if there is no topography. Topog-
raphy not only triggers the generation of eddy avail-
able potential energy, but also serves as a phase
fixing mechanism.

b. Casen =2

Fig. 13 is the stability diagram for n = 2. The
curve denoting the transition between the Hadley
and Rossby regimes is obtained as before. How-
ever, a delineation between different Rossby regimes
cannot be defined unambiguously. For relatively
small values of AT, and k,7!, typical of the atmos-
pheric values, K of the quasi-stationary waves in the
Rossby regime is maintained by the topographical
forcmg whereas A is maintained by the energy con-
version A; — Ag. When AT, or k;~! is sufficiently
large, the motion becomes highly 1rregular and no
single kind of behavior is observed.

As an example of the cases with relatively small
AT,and k!, Fig. 14 shows the energy cycle diagram
for the combmatlon AT, = 38 Kandk;™ = 26 days
We see that the energy cycle for transient waves is
basically the same as it was forn = 3. K, however,
is no longer maintained by the energy conversion
Ag — K. Topographical forcing is the mechanism

mainly responsible for maintaining the quasi-sta-

FIG. 14. As in Fig. 8 except with n = 2.
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tionary waves. Interactions between transient and
quasi-stationary waves are small even instantane-
ously (see Fig. 15). On the other hand, the process
C(K,,Ky) is significant and is consistently nega-
tive, though oscillating in time. C(A;,A;) and
C(Ar,K;) have large positive values. Therefore,
barotropic and baroclinic oscillations are both pro-
duced in this case. Once again, the interactions be-
tween transient and quasi-stationary waves can be
very large if motion is in the highly irregular regime.

Table 1 also shows the energy spectra for the case
k,™' = 26 days and AT, = 38 K with n = 2. It is
clear that for this case the physical processes are
very similar to the case with k,7* = 26 days and
AT, = 34 K when n = 3 in Rossby regime I.

5. Summary and conclusions

In summary, a truncated two-level quasi-geo-
strophic spectral model in a zonal channel on a
beta-plane was developed to study the maintenance
of the quasi-stationary waves forced by topography.
The model’s motion contains wavenumbers 0, n and
2n in the zonal direction, where n is the lowest eddy
wavenumber as well as the wavenumber of the
topography. The first three modes in the meridional
direction are allowed for each wave. The study
covered the two cases defined byn = 2andn = 3.

The spectral model was integrated by initially
perturbing the stationary solution of the equations
governing the spectral coefficients. A detailed
energetics study was made of the quasi-equilibrium
state to study the maintenance of the quasi-sta-
tionary waves.

If the flow is not highly irregular, the available
potential energy of quasi-stationary waves is main-
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n = 3 and moderately large AT, and k,?, the kinetic
energy of these waves is maintained by the energy
conversion Ag — K. If AT, or k,~' is smaller while
n = 3, kinetic energy is supplied to the quasi-sta-
tionary waves by the energy conversion K; — K
through the topographic effect in the form of a verti-
cal geopotential flux at the surface. The latter
mechanism also maintains the kinetic energy of
the quasi-stationary waves for n = 2 with relatively
small AT, and k;7. When AT, or k;~! is sufficiently
large, a unique Rossby regime cannot be defined
for eithern = 2 orn = 3.

The findings that quasi-stationary waves are main-
tained by energy conversions A; > Ag and Ag —
K when n = 3 in Rossby regime II implies that
these quasi-stationary waves are generated mainly
by baroclinic instability of the forced waves. This
kind of baroclinic wave tends to become stationary
in order to draw efficiently on the available energy
of the forced wave. According to Stone (1977) such
a cooperation between forcing and baroclinic in-
stability is a plausible explanation of the baro-
clinic nature of the quasi-stationary waves as ob-
served by Halopainen (1970) in winter. In summer,
when the meridional temperature gradient is small,
the atmospheric circulation would be in Rossby
regime 1.

The oscillation of C(Ks,K7) has apparently not
been found before. This oscillation tells us that there
is an energy conversion oscillation between K
and K ;. The behavior of the atmospheric circulation
associated with this oscillation requires further
study.

In order to see whether the results associated
with n = 3 are due to too much forcing when 750 m
is used as the topographic amplitude, calculations

tained by the energy conversion A; — Ag. For were also made for n =3 with 500 m as the
25
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F1G. 15. As in Fig. 9 except with n = 2.
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topographic amplitude for some selected combina-
tions of AT, and k,7!. The amplitude of the earth’s
topography at 30°N for n = 3 is about 500 m. The
results obtained for this choice of topographic
amplitude showed similar features to the case in
which 750 m was used.

The forcing effect of stationary heat sources and
sinks was not considered here, and therefore we
do not seriously compare results obtained here with
observations. As is known, this thermal forcing is
another major mechanism in producing quasi-sta-
tionary waves in the atmosphere (e.g., Derome and
Wiin-Nielsen, 1971), and is particularly important
in summer (Holopainen, 1970). We plan to conduct
future studies similar to the one described here but
including the thermal forcing by stationary heat
sources and sinks.
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The truncation of the spectral model restricts the
production of transient waves. Experiments with
more degrees of freedom would also be a worthwhile
extension of this study.
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APPENDIX

The Definition of Energy Conversion and Sink Source Terms

The energy conversion terms and sink and source terms on the rfght hand side of Eqs. (19)-(24) are

defined as follows:

-1 24 . .
C(Kz,Ky) = E fdl [ 2 (A2 — AN Cin(iy + ’Tj’fk)]
i=1 0 i<k=1
M-1 2-' ; )
-2 —[ E (A2 = AP Ciun(Tae + UiT)]  (Al)
i=1 fO i<k=1 .
ML 2 v
C(Kz,Kyp) = I [ 2 (A = AP Cun(Pidn + 7imi)]
i=1 Jo©  j<k=1
M-1 27, N —
-2 ——[ Z (Af — AP Cindmidi + Y]l (A2)
i=1 fO j<k=1
. 1 2 _ I
C(Ks,Kp) = =Y — -5 | 2 (A? — AP Cun(idy. + 7i7i)]
i=M fO i<k=1
I 2,7. I . _ N
-2 - [ Y (Af = AP Ciun(rid + Yimi)] (A3)
i=M JO i<k=1
—1 2Ti -
C(Az,Kz) = - 2 (Ad)
=1 AP
. 1 )
C(As,Ky) = — 7 W; (AS)
i=M Ap
2
C(Ap,Kp) = 2 7 W] (A6)
ClhpA) = -3 —i_ 5 y
»Ag) = — Cu Ej 5T A7
? i§1 Ap Spfo j<§1 el 4’!«: Vi) (47
M-1 4Ti 1
C(Az,Arp) = iik\T; J' K
(Az,Arp) El Ap Spfo Kkzl C; k(‘f Y — PiTk) (A8)
47;
ClsAD = -5 — S Coliflic - (A9)

¢,ITI)
i=1 AP Spfo j<k=1 ? k,
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2 I .1 C _
CB(Kz.Ks) = —— 3 Gi— ) S Cop(Hybue — WasHi) (A10)
fo i=M i<k=1
1 I
CB(Kz,Ky) = — [E ' Y Cul(Hy — ¢3,Hk) Z o' Y Cu(Hplse — Y3:H))] (AlD)
fo i=1 i<k=1 i=1 i<k=1
M—1 2 _
Dz = 2 s Ai llhll’m - Z ; %i(l/ZkBll’Bi - 2k1’7'i) (A12)
i=1 fO i=1 fO
I 2
Ds = Z re A Wiy — Z F(Vok pPip; ~ 2k171) (A13)
i=M fO i=M 0
1 2
Dy = Z —Azllh\llm -2 (kg — 2k;7) (Al14)
i=1 fO i=1 fO
M-1 4“‘ _ . A
G; = i§1 KF Ti(Tes — T1) (A15)
Gs = i “(A16)
$ _ZM Ap s
Gr = — 7l Al7
r E Ap S, Al

Here M is an integer such that F; for any i < M has no zonal variation and F; for i =

variation. A2 is defined by

VzFi = _AizFi,
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